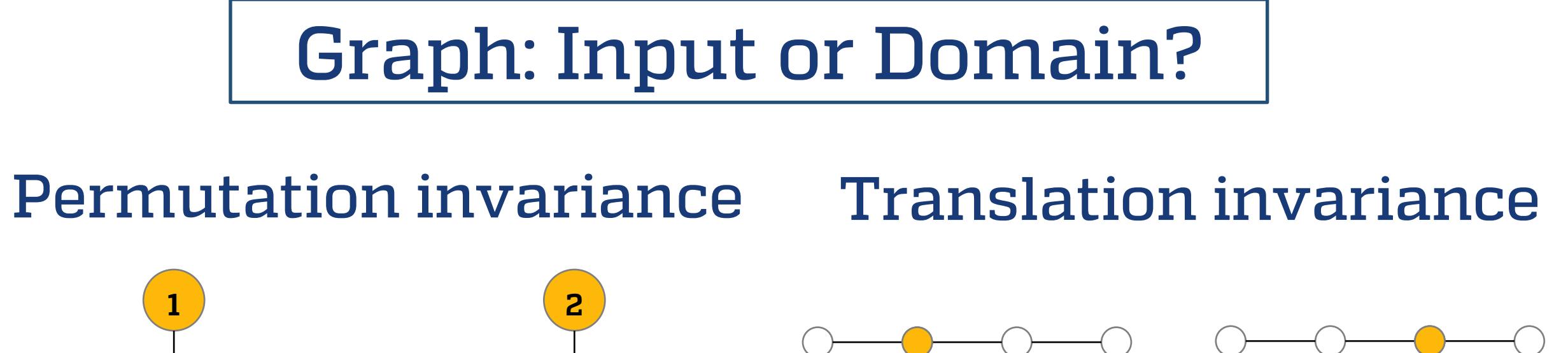


Approximately Equivariant Graph Networks

Ningyuan (Teresa) Huang ¹, Ron Levie ², Soledad Villar ¹

¹ Johns Hopkins University, ² Technion - Israel Institute of Technology

Symmetry in Graph Learning: Passive Symmetry and Active Symmetry

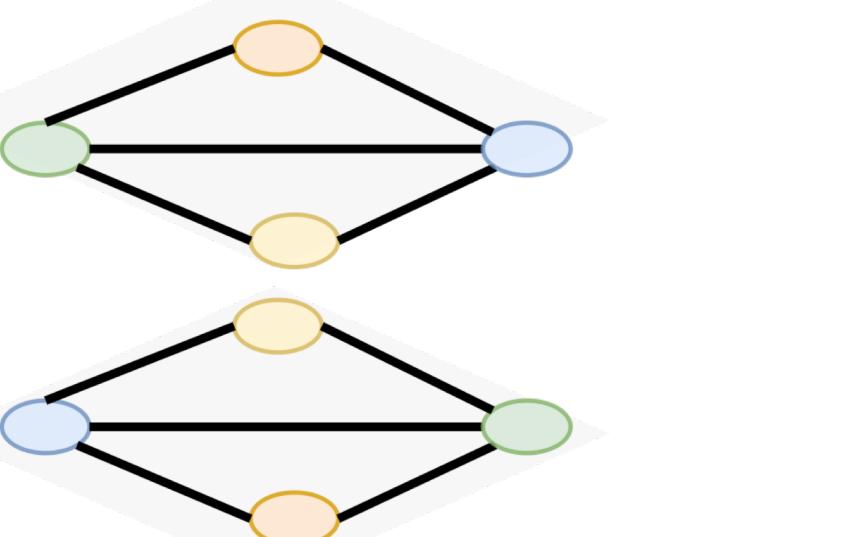


GNN Symmetry

- Domain: different graphs
- Signal: $X: \Omega \rightarrow \mathbb{R}^k$
- The group acts on signals and domain together

Passive Sym.
 $f(\Pi A \Pi^\top, \Pi X) = \Pi f(A, X)$
 for all permutations $\Pi \in \mathcal{S}_N$

Example: Node Relabeling

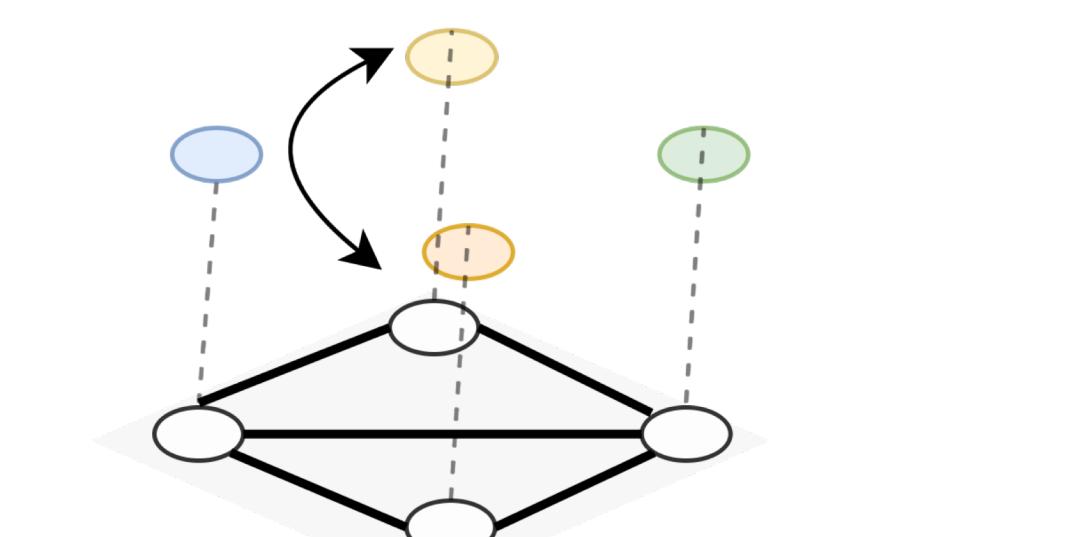


CNN Symmetry

- Domain: grid $\Omega = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$
- Signal: $X: \Omega \rightarrow \mathbb{R}^3$
- The group shifts the signals, keeping the domain fixed

Active Sym.
 $f(\Pi X) \approx \Pi f(X)$
 for permutations $\Pi \in \mathcal{G} \subseteq \mathcal{S}_N$

Example: Signal Swapping



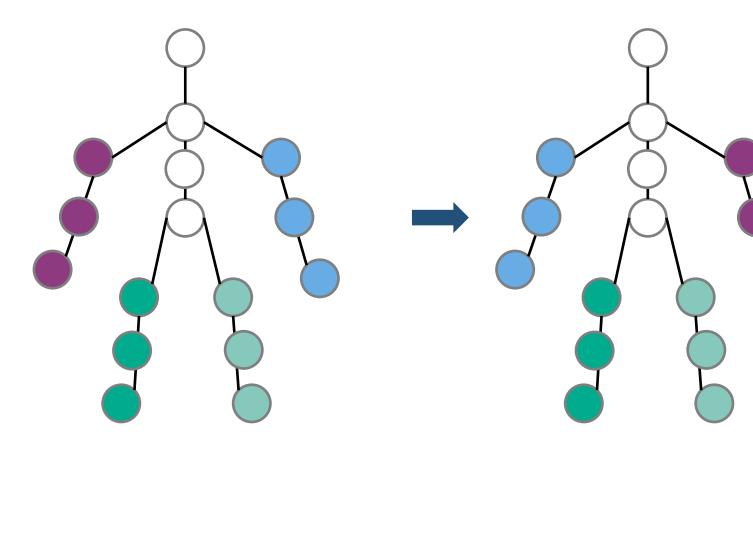
Our contribution: enforce active symmetries in GNN

Learning on a Fixed Domain with Approximately Equivariant Graph Networks

Equivariant Graph Networks using Graph Automorphisms

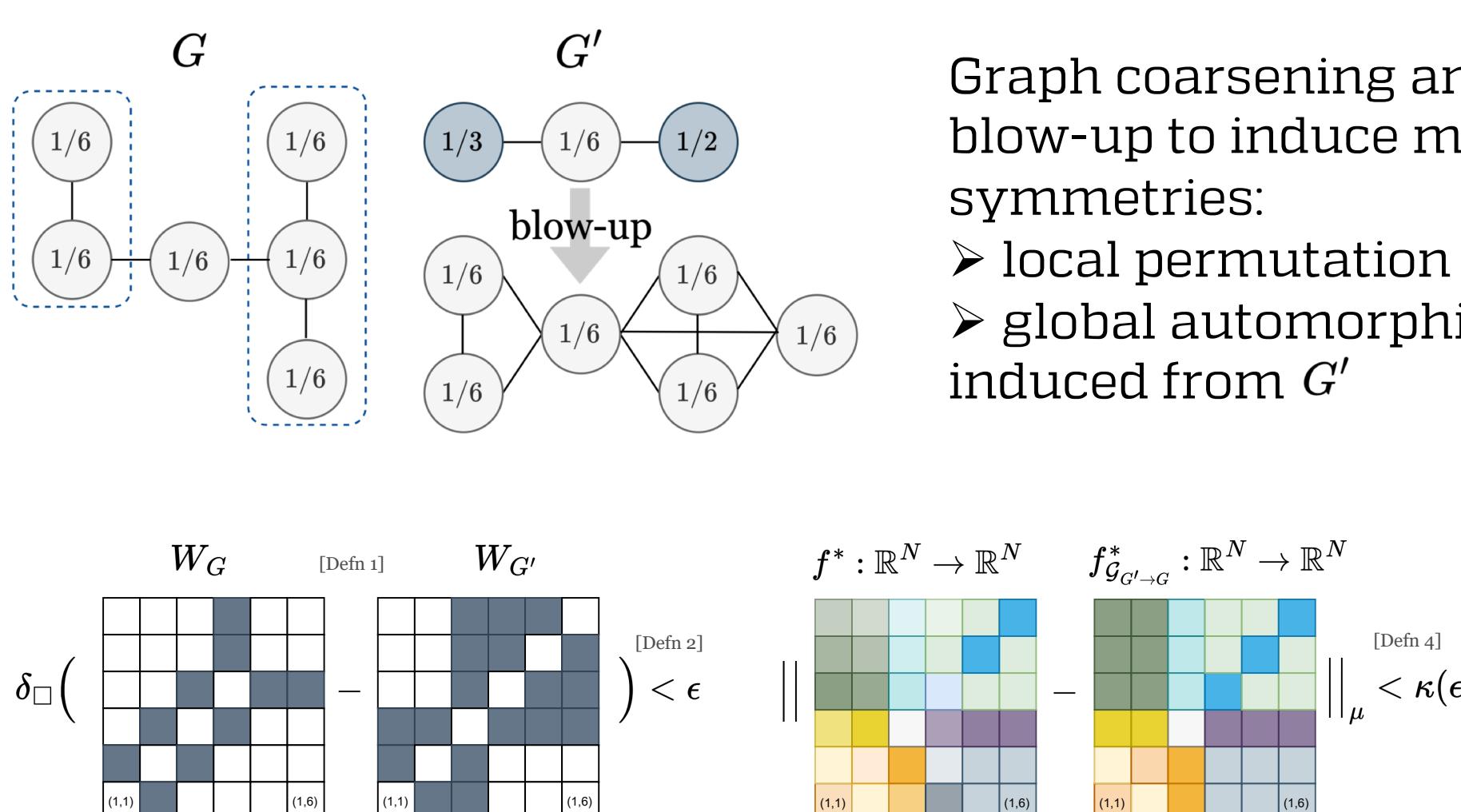
$$\mathcal{A}_G = \{\Pi : \Pi A = A\Pi\}$$

- Domain: **fixed graph**
- Signal: $X: \Omega \rightarrow \mathbb{R}^k$
- The group acts on signals only
- Network Architecture:
 - Equivariant linear map
 - Pointwise nonlinearity



Large real-world graphs tend to be asymmetric...
How to introduce meaningful symmetries?

Approximate Symmetries: Graphon Analysis



Graph coarsening and
blow-up to induce more
symmetries:

- local permutation
- global automorphism
induced from G'

$$\delta_{\square} \left(W_G \underset{\text{Defn 1}}{=} \begin{matrix} 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 \end{matrix} - \begin{matrix} 1/3 & 1/6 & 1/2 \\ 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 \end{matrix} \right) < \epsilon$$

Define approximate equivariant mapping using
notions of induced graphons and coarsening error

Example: Random Geometric Graph

- Approximate symmetries: local deformations
- Approximate equivariant mapping: functions
that are stable to local deformations.

Theoretical Results: Bias-Variance Tradeoff in Symmetry Model Selection

Let ϕ, ψ be representations of \mathcal{G} on \mathcal{X}, \mathcal{Y} respectively.
We say a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is equivariant w.r.t group \mathcal{G} if

$$f(\phi(g)x) = \psi(g)f(x).$$

Define the projection operator by averaging over group orbits

$$(\mathcal{Q}_{\mathcal{G}}f)(x) = \int_{\mathcal{G}} \psi(g^{-1}) f(\phi(g)x) d\lambda(g),$$

Let V be the space of all (measurable) functions $f: \mathcal{X} \rightarrow \mathcal{Y}$
such that $\|f\|_{\mu} = \sqrt{\langle f, f \rangle_{\mu}} < \infty$.

Theorems

Lemma (Risk Gap)

Let $X \sim \mu$ where μ is a \mathcal{S}_N -invariant distribution on $\mathcal{X} = \mathbb{R}^N$. Let $Y = f^*(X) + \xi \in \mathbb{R}^N$, where $\xi \in \mathbb{R}^N$ that is random, independent of X with zero mean and finite variance and $f^*: \mathcal{X} \rightarrow \mathbb{R}^N$ is \mathcal{G} -equivariant. Then, for any $f \in V$ and for any compact groups $\mathcal{G}_L, \mathcal{G} \subseteq \mathcal{S}_N$, we can decompose it into

$$f = \bar{f}_{\mathcal{G}_L} + f_{\mathcal{G}_L}^{\perp},$$

where $\bar{f}_{\mathcal{G}_L} = \mathcal{Q}_{\mathcal{G}_L}f$, $f_{\mathcal{G}_L}^{\perp} = f - \bar{f}_{\mathcal{G}_L}$. Moreover, the risk gap satisfies

$$\Delta(f, \bar{f}_{\mathcal{G}_L}) := \mathbb{E}[\|Y - f(X)\|_2^2] - \mathbb{E}[\|Y - \bar{f}_{\mathcal{G}_L}(X)\|_2^2] = \underbrace{-2\langle f^*, f_{\mathcal{G}_L}^{\perp} \rangle_{\mu}}_{\text{mismatch}} + \underbrace{\|f_{\mathcal{G}_L}^{\perp}\|_{\mu}^2}_{\text{constraint}}.$$

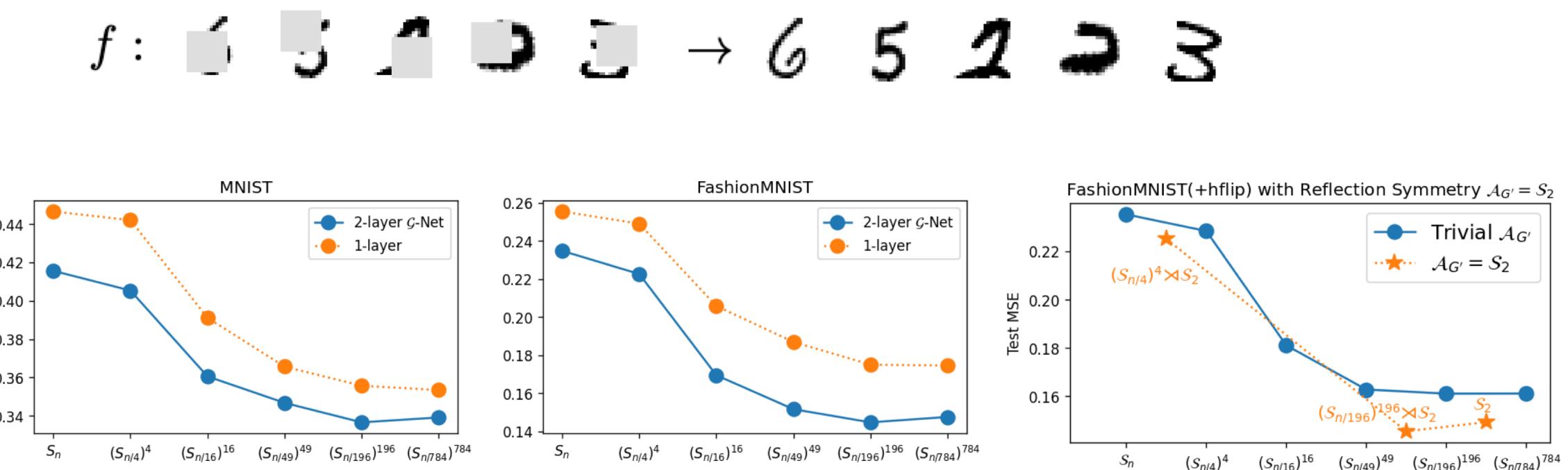
Theorem (Bias-Variance Tradeoff)

Let $X \sim \mathcal{N}(0, \sigma_X^2 I_N)$, $Y = f^*(X) + \xi$ where $f^*(x) = \Theta^\top x$ is \mathcal{G} -equivariant, $\Theta \in \mathbb{R}^{N \times N}$, and ξ is white noise. Given n i.i.d. examples $\{(X_i, Y_i) : i = 1, \dots, n\}$, let W be the least-squares estimate of Θ , $W_L = \mathcal{Q}_{\mathcal{G}_L}(W)$ be its equivariant version with respect to \mathcal{G}_L . Let $(\chi_{\psi_L} | \chi_{\phi_L}) = \int_{\mathcal{G}} \chi_{\psi_L}(g) \chi_{\phi_L}(g) d\lambda(g)$ denote the inner product of group characters. If $n > N + 1$ the generalisation gain is

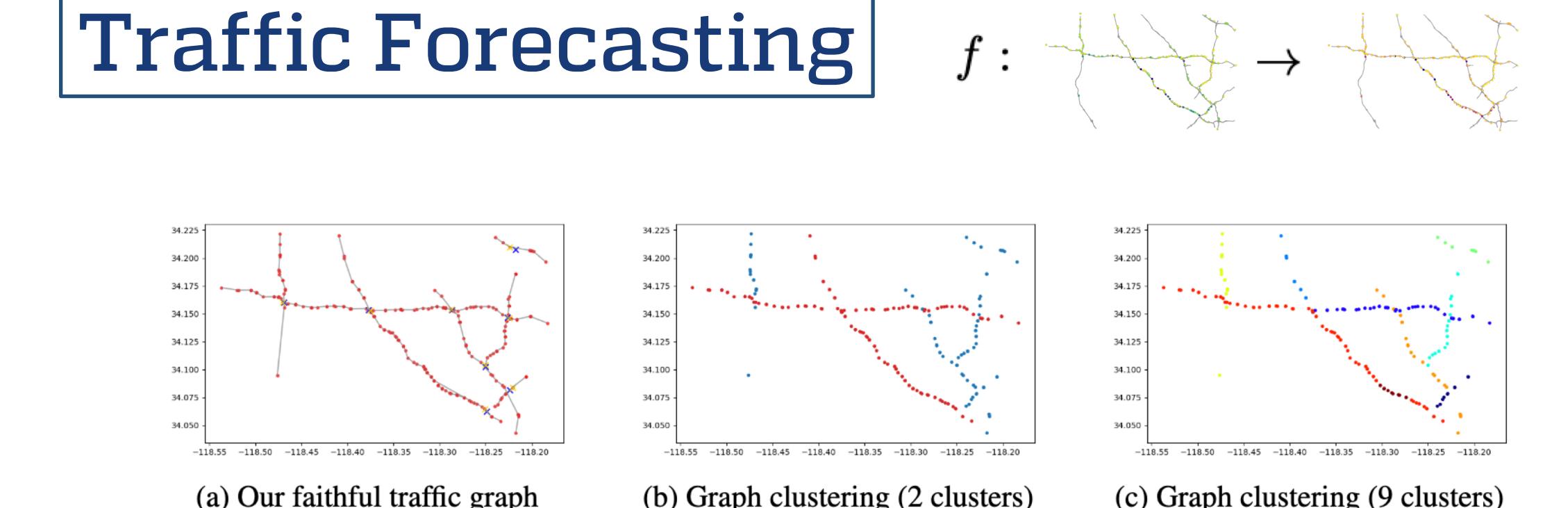
$$\mathbb{E}[\Delta(f_W, f_{W_L})] = \underbrace{-\sigma_X^2 \|\mathcal{Q}_{\mathcal{G}_L}(\Theta)\|_F^2}_{\text{bias}} + \underbrace{\sigma_{\xi}^2 \frac{N^2 - (\chi_{\psi_L} | \chi_{\phi_L})}{n - N - 1}}_{\text{variance}}.$$

Empirical Evidence: Using Active Symmetries in GNN Outperforms Passive Symmetries

Image Inpainting



Traffic Forecasting



\mathcal{G} -Net (gc)	\mathcal{S}_N	$\mathcal{S}_{c_1} \times \mathcal{S}_{c_2}$	$\mathcal{S}_{c_1} \times \dots \times \mathcal{S}_{c_9}$
Graph G_s	3.173 ± 0.013	3.150 ± 0.008	3.204 ± 0.006
Graph G	3.106 ± 0.013	3.092 ± 0.008	3.174 ± 0.013

Pose Estimation

